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ON THE MOTION FOLLOWING ISOCHORIC HEATING OF CONCENTRIC LIQUID ANNULI*

L. A, Glemn
University of California, Lawrence Livermore Laboratory
Livermore, California 94550

ABSTRACT

When adjacent liquid slabs are separated by void gaps and suddenly heated
throughout, each slab will split into two parts, which then move away from
each other. If there are n initial gaps, there will eventually be at least
n(nt+l)/2 collisions. If the initial heating is non-uniform, the collisions
will act to smear or average out the momentum generated within the fluid.
Moreover, if the flow field is divergent, cavities will form in the liquid,
the collisions will be inelastic, and energy will be dissipated. These
phenomena were studied in connection with the design of an inertial
confinement fusion reactor in which an array of concentric liquid lithium
annuli, or close-packed jets, is suddenly penetrated by high-energy neutrons
and simultaneously exposed to surface deposition of x-rays and ionic debris.
It is shown that such a design can be very effective in reducing the outward-

directed momentum and thus the impulse imparted to the reactor walls.

*Work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore Laboratory under contract #W-7405-Eng-48.



1.0 INTRODUCTION

Liquids are almost never heated at constant volume in practice, except
possibly within laboratory devices used to study their behavior at high
pressures. And in this example, naturally enough, the bounding surfaces are
rigid or quasi-rigid since the heating is accomplished rather slowly with a
Bunsen burner or a resistance coil.

In inertial confinement fusion (ICF) however, rapid, isochoric heating of
liquid lithium will very likely play a central role. The most likely ICF
reactor construction has the deuterium-tritium (DT) fuel pellet surrounded by

1) 2) of lithium, whose function is: to

thick annuli™’ or close-packed jets
breed tritium for pellet resupply, to act as an energy sink and heat exchange
medium with an external power loop, and to protect the first wall from
excessive neutronic and hydrodynamic loading. Most of the energy derived from
the pellet is in the form of high energy (up to 14 MeV) neutrons for which the
mean free path in lithium ranges up to 0.3 m3). As a consequence, the

liquid thickness must be 2-3 times this length to provide adequate moderation
and to reduce the fluence on the first wall to an acceptable level4) . The
energy release is virtually instantaneous when the DT pellet is imploded to
the thermonuclear "burn" condition and the neutron penetration throughout the
liquid occurs in a time period small in comparison with the time for release
waves to move into the bulk of the fluid from any free surfaces. The liquid
is therefore heated at constant volume, producing internal pressures as high
as 1 GPa, although the average pressure from neutron heating will probably be
lower by 1-2 orders of magnitude in a 1000 me reactor (much higher

pressures are produced by x-rays and ionic debris interaction, but only in a

very thin liquid layer facing the pellet]"z)) .



Early designs had the lithium injected as one continuous annular fall
surrounding the pellet. Since the specific internal energy from the neutron
deposition is typically 10-100 times higher at the inner radius than at the
outer, this configuration tends to produce steep positive velocity gradients
in the liquid. This is quite undesirable as it leads to high-speed spall
layers and the first wall is then bombarded with potentially erosive drops or
fragments. (Present designs call for a 1 Hz pulse rate and a 30 year
operating life span so that of the order of 109 impacts are to be
expected). The situation can be very much improved if the continuous annulus
is replaced with a series of concentric annuli, separated by gaps. The reason
is that the gaps allow pressure relief from surfaces which are interior to the
main fall boundaries. This promotes momentum exchange between fluid elements
moving in opposite directions and effectively smears or averages out the
velocity distribution in the fall. (A further design improvement has been

) in which a close-packed annular array of jets is

previously described2
employed. This allows hot, high-pressure lithium plasma, deriving from the
x-ray deposition and debris interaction, to vent from the cavity formed by the
inner radius of the innermost annulus. The superposition of these concepts
has also been discusseds)) .

When finite difference calculations were made of the disassembly and
subsequent interaction of isochorically heated concentric liquid annuli, the
results showed that, in addition to spacial averaging, the total momentum
impinging on the first wall was reduced, implying that energy dissipation had

occurred. Moreover, the dissipation increased as the gap(s) between the

annuli were widened and as the number of gaps was increased. It is our main



purpose in what follows to describe this behavior in some detail and to
explain why the dissipation occurs. The theory developed can also be applied
to calculate the pressure exerted on the first wall by the impact of a
cavitated fluid. This will be demonstrated for the case of a multi-annular
lithium fall in a 1000 Mwe (2700 MJ) ICF reactor upon which the crossflow

impulse (from the vented plasma) has been superposed.



2.0 TWO ANNULI SEPARATED BY A VOID GAP: THE MODEL

The problem is sketched in Figure 1. At time t = 0 two liquid annuli,
each of thickness A, and separated by a void gap of width §, are
instantaneously heated. We assume, for the present, that the heating is
uniform, so that the initial specific internal energy everywhere within the
Lagrangian region R0 <r«< Rl is - Furthermore

€& << e, (1)

where e is the cohesive energy of the fluid, which in the case of lithium

is 23.03 MJ/kg. We assume further that the equation of state (EOS) describing
the slightly expanded liquid phase is of the Griineisen form with a
Clausius—Clapeyron-like term employed for the two-phase, liquid-vapor

regionl) :

( 2
PoCo (n-1) + YoPo® (2a)

P = Max
ﬂ Pc exp(l.4 - 1.481 ec/e) (2b)

“

where Po is the reference liquid density, Yo is the Griineisen parameter,

C, is the sound speed at the melting point, and the constant Pc = 100 MPa.

0
P, P, and e are respectively the pressure, density and specific internal
energy, and N = p/oo. For n <1 - Yoe/cg, the inequality (1) implies

that P -~ 0, i.e., the Clapeyron term in (2b) behaves like a tensile cut-off.
In this case the FOS is similar to models used to describe porous

materials6); as will be seen, the analogy is quite relevant.



Initially, n = 1 so that the pressure developed is P0 = YpPp€0-
The inner and outer radii of each annulus are free surfaces from which
centered rarefactions then move into the fall interior. The free surface

particle speed is
U ¥ Py/pCo = Ygee/Co (3)

If we neglect the divergent geometry for the present, Ul is also the speed
along the trailing characteristic (tail of the expansion fan) which is itself
moving at speed CO-Ul into the fluid. Behind the tail, conditions are
everywhere uniform and energy conservation requires the specific internal

energy to have decreased to
- 1 -
ep = e -3UL = egll - YoMy/2) (4)
where we have defined the Mach number parameter
- c (5)
My = Yo%/Co

The leading characteristic (head of the expansion fan) arrives at the center
of each annulus at t0 A A/ZC0 and the pressure is reduced to zero

everywhere shortly thereafter (although this may take up to twice as long when
the spacial distribution of energy is initially non-uniform). The particle
velocity distribution at this point will appear approximately as sketched in
Figure 2. (In actuality, the interaction of the reflected characteristics at

the center of the fall will create a nonsimple wave region which will result



7), however, that the width

in cavitation occurring there. It can be shown
of the cavitation region, i.e., that region at the center of each annulus in
which negative pressures would be generated but for the cut-off in Eq. (2), is
approximately A(MO/Z)/(l - MO/Z). And since Eg. (L) implies M0 << L, we

are justified in neglecting this effect, at least for the present). Each of
the fluid annuli will then begin dividing in half with the outer half moving
outward and the inner half inward. The Lagrangian element defined within

R, <r <Ry will collide with the element defined within R, < r < Ry

-t

in a time increment t 0 = 5/2Ul = GCO/Zyon. These two

1
fluid elements are shown shaded in Figure 1 for t > tO; for clarity, the

boundaries of the remaining fluid elements are identified with dashed lines.
Maximum momentum interaction will be achieved if the collision occurs after

pressure relief has been fully accomplished in each segment, i.e., if

t, -t > & This inequality can be re-written as

§/b > My (6)

Upon collision, shocks will reflect with speed S from the contact interface,
which is a line of symmetry in the non-divergent case. The particle velocity
and specific internal energy behind the shock then regain their initial

values, i.e.,

U, =0 (7)

(8)



Restricting attention to the right-hand, or outward side of the contact

interface, mass and momentum conservation require

p1(8 - U) = p,S (9)

and

2

P l)

s? = p)(S -~ U (10)

2 ¥ Py

where due account has been taken of the fact that both Pl and U2 are zero.

Formal solution of (2), (9) and (10) yields

n, = A+ YA" - B (11)
and ~nzs/co = P2/PO = nlnzxvxo/(n2 -ny) (12)
where A = % [(1 - My + nl(l + M(Z))] (13)
and B = nl(l - MO) (14)

0] represents the average density of the fluid elements at the moment of the
collision (ahead of the shocks). In a linear field, this is readily

determined by solving (2a) with Pl(nl,el) = 0. The result is

The subscript (max) is appended to signify that this is the maximum value ny

can take if the pressure is to be everywhere zero before collision. We note



that ny < ml)max even for slab (linear) geometry if account is taken of
the cavitation developed at the midpoint of each annulus by the reflected
rarefaction fan - neglected here because of the assumption that Mo << 1.
That n < (nl) max for cylindrical or spherical flows is easy to
demonstrate. In a divergent flow field the flow cross section for the
radially outward-moving segment continues to increase and since the pressure
is wniformly zero, there can be no compensating acceleration. Then, by
continuity, the density must decrease in this segment. The BOS (2) is not
symmetr ic about (nl)max' however, so the converging flow in the radially
inward-moving segment will be accelerated with n, R (N}) pax in this
segment. At contact, the average density of the ensemble must then be less
than the maximum and will be lower the greater is the initial separation
distance, §.

Now, since it is clear on physical grounds that
Mg SNy 21 (16)

equations (11) - (12) can be simplified somewhat by taking the cavitated

Hugoniot to be approximately equal to the reference isochore, i.e., by setting
n,=1 (17)
so that

-5/Cy = Bp/By = nM/(L-ny) (18)
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The relative error in the pressure is then

e = [®) et ~ P2/ ®emmee = M/ (@ - fa-np] 9

where (P derives from (12).

2)exa:t
€ is plotted as a function of ny in Figure 3 with Ny evaluated from

(11), (13) and (14), using My = 1072, This is the approximate value of

My derived when the total neutronic energy deposition per unit length, at

the horizontal plane passing through the equator of the fusion pellet, is

averaged over the lithium fall mass per unit length - assuming a 1000 MWE

reactor with a lithium fall thickness of 1 m beginning at an inner radius of

0,5 m. It is seen in Figure 3 that the approximation (17) results in at most

a 20% relative error in the calculation of the collision pressure. Even this

result is somewhat misleading because the maximum relative error occurs when

the pressure gradient BP/Bnl is very steep. Figure 4, which plots the

collision pressure as a function of the pre-collision density, shows that

Egs. (17)-(18) are indeed a very good approximation to the exact solution.

Figure 4 also shows that a very small dec%ease in the pre-collision
density produces a very large decrease in the collision pressure. Cavitating
the fluid by only 1% below (nl)max (¢ 0.99 for M, = 10—2) decreases
the shock pressure by almost 40%!

The physical picture may be clarified somewhat by the P-V diagram
sketched in Figure 5 (V = 1/n). Point A corresponds to the initial state
attained uwon energy deposition, i.e., PA = PO(V =1, ex= eo). The
fluid is then isentropically expanded along the path A > B > C. Point B
corresponds to the "linear" geometry case, i.e., P, = P(nl = (nl)max' e = el).

B
Collision occurs at point C. The path C +~ D is a Rayleigh line and no
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intermediate states are possible. Conservation of energy requires that the
area AEBOD equals CDO; it is therefore clear that PD’ the collision
pressure, rapidly decreases as VC increases. The shaded area CEF represents
the energy dissipated by the collision.

Now, once again referring to Figure 1, when the shocks have reached the

Lagrangian surfaces, Ra and Rd' they are reflected as rarefactions behind

which the particle speed will be
U; i P,/p,Cy (20)

The net impulse eventually imparted to the wall is proportional to the total
outward-directed momentum pyA (U, + U3)/2. Had the energy been deposited
in a single annular fall, without any iﬁrbedded void gaps, the outward-directed

momentum would have been simply 0,AU,. Thus the impulse ratio is
071"

(Ul + U3)/2Ul or, employing (3), (17), (18) and (20):

/1, = [1 + Mgny /(1 - nl)] /2 (21)

If the colliding fluid masses are cavitated by only 1% below (nl) max’ the

-2

impulse ratio for M0 =10 © is 0.75.
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3.0 NUMERICAL EXPERIMENTS

Equations (18) and (21) predict the pressure and outward-directed
momentum given nye the average density just prior to collision. For slab
geometry and M0 << 1, equation (15) provides a satisfactory estimate of this
quantity. No such simple estimate is evident when the geometry is divergent
because of the absence of symmetry about the radius of collision and the
inhomogeneity of the colliding fluid packets. In general, Ny in this case
will depend on the geometry (inner annular radius, annular thickness and gap
width) as well as on M- On the other hand, numerical solution of the
initial value problem posed in Figure 1 by finite difference methods is quite
straightforward. Figure 6 depicts the results of a number of such
calculations made with the AFTON code7) . The impulse ratio, I/IO, is
plotted as a function of the ratio of the gap width to thickness ratio, §/A.
Two different initial energy deposition functions were used, a "typical"
distribution and a uniform distribution. In the former, g varied from
v 2 MI/kg at the immer radius (0.5 m in all cases) to 2 X lO_2 MJ/kg at the
outer. In the latter, ey was constant throughout the fall and equal to the
mass—-averaged energy derived from the non~uniform case
(0.225 MJ/kg, corresponding to M, = 107%). For both deposition functions,
calculations were first made for a single annular fall (/A = 0). The total
outward-directed momentum for the non-uniform deposition was 42% higher than
for the uniform case (the peak outward velocity, at the outer radius, was
almost 5 times higher). The ordinate values for the points shown in Figure 6
(open for uniform deposition and shaded for non—uniform) were derived by

dividing the total outward-directed momentum obtained with the fall initially
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split (into n + 1 annuli separated by n void gaps; n = 1,9) by the total
outward-directed momentum for the single annular geometry and the same initial
energy distribution and total mass. The multi-annulus problems were generated
from the single annulus problem after the energy was deposited. This was
done, for n gaps, by dividing the single annulus into n + 1 Lagrangian
segments and inserting the gaps of desired thickness, beginning with the
innermost gap and proceeding outward. After eaéh gap was inserted, the
thickness of all succeeding segments (and the mesh spacing by which they were
delineated) was appropriately foreshortened to conserve mass.

Considering first the single gap calculations, it is remarkable that
although the impulse depends very much on the initial spacial energy
distribution, the impulse ratio is effected very little, if at all, it's value
being determined strictly by the mass-averaged energy (represented by M)
and the geometry. Using the numerical data derived from the calculations at

M, = 1072

expression

, we found that a very good fit was obtained with the empirical

/1, = {1 +1/0 + (a/m/mo]}/z (22)

as evidenced in Figure 6. To test the M0 dependence, we increased this
parameter by an order of magnitude, to lO-l, and used the code to calculate
Iy (single annular fall) and I (L void gap, §/A = 0.25); the ratio I/I0 =lo)
determined was 0.801. This agrees with the value of 0.808 predicted by (22)

to within better than 1%.
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If (21) and (22) are equated, it is possible to "experimentally" deduce

the parameter N for the single gap case:

(”1’R0=o.5m L+ My + (8/8y /4171 (23)
For 6/6 >0, n; > (L +M)™" % 1 - M for My << 1, which is the
correct density ratio in this limit.

Figure 6 also shows the effect of gap thickness on the impulse ratio when
the number of gaps is increased. A much smaller relative gap spacing is
required to effect a given impulse reduction when the number of gaps is
increased from 1 to 9. Also, very little is to be gained by increasing the
void to annulus thickness ratio above 0.25 when M0 = 10—2. Figure 7,
which crossplots Figure 6, shows moreover that little is to be gained by

splitting the fall into more than 10 or so concentric annular segments.

3.1 A PRACTICAL EXAMPLE: MULTI-ANNUIAR FALL DISASSEMBLY IN AN ICF REACTOR

Figure 8 shows the calculated mass-averaged outward-directed velocity, U,
as a function of time for two different fall designs in a HYLIFE
reactorZ'S); the ordinate was obtained by dividing the total
outward-directed momentum by the outward-moving fluid mass. In the design
labeled "actual", 300 jets, each of 200 mm diameter and arrayed around the DT
pellet in a close-packed annular fashion, were simulated by 9 concentric
annuli separated by void gaps. The innermost annulus was located at a radius

of 0.5 m and was associated with the first 12 jets so that it contained 4% of

the total jet mass. The second annulus had 6% of the mass, the third 8%, etc.
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up until the eighth, which had 18%, and each of these was separated by a void
gap of 118 mm. The outermost annulus contained the remaining 12% of the mass
and was located 88 mm from it's inner neighbor.

For t < 60 us, the problem is dominated by x-ray deposition and ionic
debris from the DT pellet, which penetrate only a very thin layer in the
innermost exposed jets (inner annulus). The details of the resulting
implosion and blowback have been discussed elsewhereg) . In brief, a hot,
high-pressure lithium plasma is created in the core which then expands,
against the jets, flows around or in between them, and continues to expand
until contact is made with the first wall - located 2 or more meters beyond
the last row of jets. Coupled with the jet disassembly induced by x-ray spall
and neutron heating, this results in a complicated three-dimensional flow. A
quasi-one-dimensional method was, however, devised to calculate a first
approximation of the drag impulse exerted on the jet array by the venting
plasmaz) . This impulse, which was effectively terminated by t % 350 us, was
then superimposed on the radial motion of the concentric annuli caused by the
isochoric heating. The object, of course, was to obtain a reasonable estimate
of the impulse imparted to the first wall by the lithium.

For the "actual" design, the spacial distribution of particle velocity
and density is shown in Figure 9 at t = 60 us, when the plasma first arrived
at the inmnermost annulus. An Eulerian inner boundary was imposed at r = 0.5 m,
since the cavity region had been calculated separately to determine the
blowback and crossflow. All other annular boundaries were Lagrangian until

8)

gap closure was attained, after which a gradual, accordion-like ' rezone was
employed. It can be seen that at 60 us, the fast-moving x-ray spall layer

from the first "row" has already made contact with the second row. The peak
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outward-directed velocity at this time exceeds 2 km/s. Also noteworthy in
Figure 9 is the splitting evidenced in the remaining annuli by the non-uniform
neutron heating (the fluid density is shown by the shaded overlay; the
reference liquid density was 0.518 g/cc).

By t = 1 ms, Figure 8 shows that the average outward-directed velocity
has decreased to about 52 m/s. Figure 10 illustrates the velocity and density
distribution. Contact has been made by all but the last three annuli. By
t = 5ms, U in Figure 8 has dropped to its minimum value of 36 m/s and Figure
11 shows that all of the fluid annuli have joined. The outward-moving fluid
has begun to compact, a process that is essentially completed 10 ms later as
seen in Figure 12. At this point, virtually the entire fluid mass (at the
plane of the DT pellet) is at near-liquid density and is moving outward at a

uniform velocity of 38 m/s.

3.2 NUMERICAL ERROR

Most practical schemes for the solution of arbitrary initial value
problems in continuum mechanics are dispersive, i.e., if the solution is
thought of as being expanded in Fourier series (with time dependent
coefficients), different components travel with different speeds. 1In
particular, components whose wavelengths are of the same order as the spacial
mesh discretization interval are always falsified somewhat. In most cases
this is of little interest as long as the amplitude of the falsified
components remains small everywhere, a condition that is usually easy to meet
with a judicious choice of artificial viscosity and timestep. Unfortunately,

however, dispersion may lead to serious error in the isochoric heating
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problem. The reason is that the small decreases in the average density that
result when square corners are rounded or smeared can cause large decreases in
the collision pressure (cf. Figure 4). In numerical experiments performed
with just two colliding slabs (linear geometry) and with M0 << 1, so that
the actual dissipation must be negligible, upwards of 500 zones were required
to assure this result. and while the calculation described in Figures 9-12
did employ 500 zones, there were many more free surfaces and collisions.
Moreover, of the 500 zones initially employed, only about 300 ended up
delineating the liquid and two-phase liquid-vapor region, the other 200 having
blown off early (within the first few microseconds) with the plasma into the
core cavity.

There has been some recent progress with the development of numerical

methods that are (practically) non—dispersivelo'll) ; Keith Miller's moving

finite element (MFE) methodll)

appears to be especially promising in this
regard. They have not yet been adapted to problems as complex as those under
consideration here. Alternately, the magnitude of the error induced by
dispersion with the present algorithm might be determined by minimizing the
gap width between annuli. Figure 6 shows that if the gap width is of the
order of MO' in accord with the inequality (6), the dissipation is very much
reduced, without effecting the desirable spacial averaging of momentum.
Accordingly, a multi-annular fall geometry was set up with the same mass and
energy distribution as for the actual design described above, but with the
much reduced gap spacing. The performance of this "minimum gap" design is
shown in Figure 8. With the gap spacing reduced such that the first

collisions occur everywhere near simultaneously, and in a time period not much

exceeding the time for initial pressure relief, the average outward-directed
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velocity is determined much more rapidly than with the actual design. The
minimum value of U of 31.5 m/s occurs at about 300 ps and by 1 ms, the
available potential energy of collision has been reconverted to kinetic energy
and U has stabilized at 41.5 m/s. This may be directly compared with the 38
m/s obtained with the actual design, since the identical crossflow impulse was
super imposed on both problems. The 10% difference is probably an acceptable

margin of error, considering the rather crude model.
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4.0 IMPACT ON THE FIRST WALL

Our main concern is that the hoop stress that results from fluid impact
does not exceed the maximum allowable working stress. If the first wall were
located at 2.3 m, i.e., directly behind the nearly compacted fluid packet in
Figure 12, the impact pressure would be P, - poﬁo. For lithium,

Py = 0.518 g/cc, C0 = 4.5 kn/s, and if we conservatively take U = 41.5

m/s, P3 = 96.7 MPa. This pressure will persist for a duration T = 28/C,,
where £ is the thickness of the fluid packet (from Figure 12,

2% 2.3-1.8=0.5m, so that T% 0.22 ms. The natural period of the wall
is T = 2ﬂRwA/E;7E;' where R.W is the wall radius, Ew is the Young's

modulus and Pu is the density. If 316 stainless steel is used, and with

Rw =2.3m T= 2.8 ms so that 7/T << 1. 1In this case, it has previously

§

1)
been shown™’ that the peak hoop stress, Omax = (P3r/6wr\/E P’

where dw is the wall thickness. Assuming Gw 100 mm, the peak hoop

stress under these conditions would be 1.08 GPa, at least 10 times the
recommended working stress for 316 SS under fusion reactor conditionsl).

Now suppose the first wall is relocated at a 5 m radius. Since the
pressure in the outward-moving fluid packet in Figure 12 is everywhere zero,
no further acceleration is possible and the packet will coast at the speed U
until impact. The speed is uniform throughout so the thickness of the fluid
packet will be maintained. But continuity requires that as the field
diverges, the density must drop. If the density is % Po at t = 15 ms,
impact will occur at 15 + (5-2.3)/.0415 = 80 ms at which time the density
ratio will be n = o/py = (2.3% - 1.8%) /(52 - 4.5%) = 0.43.

Physically, we expect that cavities will be initially formed within the bulk
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liquid. Tf n is sufficiently small, the fluid will appear as a rain of drops
or fragments but this is probably not the case here. The impact of the
cavitated liquid on the (assumed rigid) wall is exactly analogous to the
symmetrical impact described by (18). Within the present context,

Py = pp0on/(1-n); with n = 0.43 the impact pressure Py = 0.67 MPa,

more than 100 times less than obtained when R, was 2.3 m, but still

2/(1 - n) or 3.5 times the Bernoulli pressure. Also from (18), the compaction
speed, S, will be UnAl-n) = 31.3 m/s, so that in this case the pressure will
persist for a period T ¥ 2/S + 2/Cy % 2/S = 16 ms. And if R = 5m,

T=6.2ms and /T > 1. In this case, the peak hoop stress is simply

Ohax - 2P3Rw/6w = 67 MPa, within the allowable range.
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5.0 SIMMARY AND CONCLUSIONS

Steep velocity gradients can be produced in a liquid slab if it is
suddenly and non-uniformly heated. These gradients can be effectively smeared
out if the slab is subdivided into a number of slabs that are separated by
gaps. The gaps allow pressure relief from surfaces interior to the main inner
and outer boundaries, which promotes momentum exchange between fluid elements
traveling in opposite directions, thereby averaging out the velocity
distribution. This effect is very important in an ICF reactor because even if
the impulse delivered to the wall is within tolerable limits, the bombardment
by high-velocity spall fragments can eventually cause severe erosion damage.

If instead of slabs, concentric liquid rings are considered, the impulse
itself can be reduced. The inability of liquids to support tensile stresses
results in the formation of incipient cavities in the outward-moving segments
of each ring. On contact with the inward-moving segments, shock compression
of the "porous" liquid causes energy to be dissipated and the collision
pressure can be very much less than in the equivalent slab impact. The
rebound velocity varies directly with this pressure so that an inelastic
collision results and the outward-directed momentum (which forms the impulse
imparted to the first wall) is reduced.

A simple model was developed for predicting the pressure developed when
cavitated liquid masses collide with each other or with a rigid wall. The
pressure was found to be a strong function of the pre-collision density;
cavitating lithium by only 1% results in a 40% reduction in the impact
pressure for an impact Mach number of 10—2. A direct result of this effect

is that numerical dispersion can introduce significant error when calculating
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the disassembly and subsequent interaction of pressurized liquids with
conventional finite difference or finite element methods. Finer mesh
discretization is the (costly) remedy employed here but it would be better to
use methods that eliminate dispersion altogether, if these can be found.
Numerical simulations were made of the response of a multi-annular
lithium fall in a 1000 MWe reactor to the energy deposition from the fusion
pellet. The resultant impact load on the first wall of the reactor was found
to depend very much on its location. Placed at a radius of 2.3 m, in contact
with near-normal density liquid, the peak hoop stress exceeded 1 GPa. Placed
at a 5 m radius, as in the actual design, so that the average density at
contact was more than halved, the peak hoop stress was reduced by a factor of

16 to an acceptable level.
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sponsored by the United States G t o

e Unite ates Government. i
Neither the United States nor the United States name does n.Ot imply approval or
Department of Energy, nor any of their employees, recommendation of the product by
nor any of their contractors, subcontractors, or the University of California or the
their employees, makes any warranty, express or
u_r;)p%xed, ?r assames any legal liability or respon- U.S. Department of Energy to the
sibility for the accuracy, completeness or exclusion
usefulness of any information, apparatus, product . of others that may be
or process disclosed, or represents that its use suitable.

would not infringe privately-owned rights.”
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LIST OF FIGURES

Two concentric liquid rings separated by a void gap; suddenly heated at
t=0; at t = tyr when the pressure has just released; and at t > ty
when collision occurs.

Spacial distribution of particle velocity at t = tO’ when the pressure
has just released (slab geometry).

Relative error in computing the pressure by assuming the Hugoniot to be
approximated by the reference isochore.

Collision pressure as a function of pre-~collision density.

Disassembly and collision sketched in the pressure-specific volume plane.
Impulse imparted to the wall as a function of gap-to-annulus thickness
ratio. Numerical results computed for 1 and 9 gaps, and for uniform and
non-uniform spacial energy deposition (refer to the text for details).
Impulse imparted to the wall as a function of the gap number for
different gap-to-annulus thickness ratios and an impact Mach number of
1072 (crossplot of the data in Figure 6).

Calculated mass-averaged outward-directed fall velocity as a function of
time for two different fall designs in a 1000 MWe ICF reactor (refer to
the text for details).

Spacial distribution of particle velocity and density (shaded) for the
"actual"” design of Figure 8 at t = 60 us.

Spacial distribution of particle velocity and density (shaded) for the
"actual" design of Figure 8 at t = 1 ms.

Spacial distribution of particle velocity and density (shaded) for the
"actual" design of Figure 8 at t = 5 ms.

Spacial distribution of particle velocity and density (shaded) for the

"actual" design of Fiqure 8 at t = 15 ms.
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